Universidade de Brasília Departamento de Economia

Disciplina: Economia Quantitativa II

Professor: Carlos Alberto

Período: 2/2014 Quinta Prova

Questões

1. Assuma que uma economia está composta por dois setores: agricultura (A) e indústria (I). Em um determinado ano o setor A produziu 70 e, para lograr essa produção, comprou do próprio setor 3.5 e 10.5 do setor industrial. O setor I, por sua vez, produziu 30 e, para produzir esse montante, comprou da agricultura 7.5 e 3 do próprio setor.

Suponhamos que a demanda final da agricultura seja de 70 e a da indústria de 16.5, qual será a produção total necessária para satisfazer essa demanda final.

(Esta questão vale um ponto)

Resposta: a matriz A dessa economia será:
$$A = \begin{bmatrix} 0.05 & 0.25 \\ 0.15 & 0.10 \end{bmatrix}$$

A matriz (I-A)⁻¹ =
$$\begin{bmatrix} 1.101 & 0.306 \\ 0.183 & 1.162 \end{bmatrix}$$

Dessa forma, dada uma demanda final de 70 (para A) e 16.5 (para I), temos que a produção total será de 82,12 (A) e 31,98 (I)

2. O administrador de um fundo de investimento pode investir R\$ 10 em dois tipos de aplicações financeiras A e B. A aplicação A tem mais risco, mas o rendimento esperado é de 10%. O investimento em B é mais seguro, mas o rendimento esperado é de 7%. O fundo de investimento e o país tem certas restrições institucionais e legais. O administrador pode investir no máximo 6 na alternativa A e um mínimo de 2 na alternativa B. Por outra parte, o montante alocado em A dever ser, no mínimo, igual ao investimento em B.

Como vai alocar os R\$ 10 para atingir o máximo rendimento ?

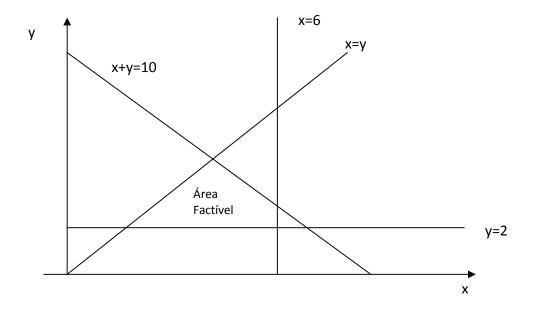
(Esta questão vale três pontos)

Resposta: (vamos a chamar de x o investimento em A e y em B)

Max
$$0.1x + 0.07y$$

s.a.
$$x+y \le 10$$

 $0 \le x \le 6$
 $y \ge 2$
 $x \ge y$



O ponto que maximiza é (6;4). Ou seja, o administrador do fundo vai investir 6 na alternativa A e 4 na B.

3. Resolver o seguinte problema de programação linear:

Min.
$$2 x_1 + 3 x_2 + 5 x_3 + 2 x_4 + 3 x_5$$

s.a. $x_1 + x_2 + 2 x_3 + x_4 + 3 x_5 \ge 4$
 $2 x_1 - 2 x_2 + 3 x_3 + x_4 + x_5 \ge 3$

(Esta questão vale 3 pontos. Dica: sabemos que um programa como:

Max.
$$4 w_1 + 3 w_2$$

s.a.
$$w_1 + 2 w_2 \le 2$$

 $w_1 - 2 w_2 \le 3$
 $2w_1 + 3 w_2 \le 5$
 $w_1 + w_2 \le 2$
 $3w_1 + w_2 \le 3$

Tem como solução : $w_1 = 4/5$; $w_2 = 3/5$.)

Resposta: o programa que demos como dica não é outra coisa que o dual do problema que se tem que resolver. Dados os valores das soluções, sabemos que só as restrições 1 e 5 estão operando, as outras estão com folga. Assim, no primal temos que só x $_1$ e x $_5$ são diferentes de zero. Dessa forma temos um problema extremamente simples cuja solução é x $_1$ = x $_5$ =1.

4. No seguinte problema de programação linear:

Max
$$y_1 + 1.5 y_2$$

s.a. $2 y_1 + 2 y_2 \le 160$
 $y_1 + 2 y_2 \le 120$
 $4y_1 + 2 y_2 \le 280$

A solução é $y_1 = y_2 = 40$

Pergunta: qual é o intervalo de variação dos coeficientes da função objetivo no qual essa solução é válida ?

(Esta questão vale três pontos)

Resposta: $0.75 \le y_1 \le 1.5 \text{ e } 1 \le y_2 \le 2.$